手机版 欢迎您!
您的当前位置: 首页 常识

事件互不相容说明什么(互不相容和相互独立的概念,应用)

作者:小萌九尾 时间:2024-07-10 21:00:16

互不相容

在概率论与数理统计当中,有一种概念,叫做互不相容,从字面意思上来理解,便是两者不能容忍各自的存在,假定事件A和事件B互不相容,那么事件A存在,事件B必定不存在;反之,事件B存在,事件A必定不存在。

相互独立

而相互独立,便是两个事件的发生互相之间没有关系,都是各自独立存在的事件。

假设事件A和事件B相互独立,那么事件A可以和事件B同时存在,也可以不同时存在,也可以事件A存在事件B不存在,同样也可以事件A不存在而事件B存在。

一般来说,当两个事件满足P(A)(B)=P(AB)的时候,我们就说这两个事件相互独立。

实践出真知:给出两道例题

第一题:

第一题

这道题给出三个事件,其中事件A与事件C互不相容,既可以说明事件A存在,事件C就不存在。

然后其中的¯C表示1-C,也就是C的对立事件,那么,¯C必然包括事件A,也包括事件A与事件B的交集。

又因为P(AB|¯C)是根据条件概率的定义来进行计算,可以得到:

P(AB|¯C)=P(AB¯C)/P(¯C),因为¯C包括事件A与事件B的交集,所以可以写为P(AB)/P(¯C)。

得到(1/2)/(1-1/3)=(1/2)/(2/3)=3/4。

结果如下图所示:

步骤一

第二题:

第二题

这道题说事件A与事件B相互独立,第一可以想到P(AB)=P(A)P(B)。

然后也能够得到A与¯B相互独立、¯A与B相互独立,接下来我来证明为什么。

首先要证明一个公式:P(A¯B)=P(A-B)

A-B我们可以理解为事件A与事件B之间的差,那么就是事件A发生,但是事件B不可能发生。

¯B之前介绍过了,它是事件B的对立事件,为1-B,那么事件A与¯B之间的乘积,也可以理解为事件A发生,事件B的对立事件发生,也就是事件B不发生,所以前后两个式子可以等同。

要证明A与¯B相互独立,即要得到P(A¯B)=P(A)P(¯B)。

因为P(A¯B)=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B)=P(A)[1-P(B)]=P(A)P(¯B)。

所以,证明得到A与¯B相互独立,同理,B与¯A相互独立。

那么,做这道题就很简单了:

P(A-B)=P(A¯B)=P(A)P(¯B)=P(A)P(1-B)=0.3。

P(A)=0.3/P(1-B)=0.3/0.5=0.6。

P(B-A)=P(B¯A)=P(B)P(¯A)=0.5X0.4=0.2,所以,答案选择B选项。

结果如下图所示:

步骤二

总结:

总的来说,这些题目都不难,关键就是熟练掌握互不相容和相互独立两种概念,熟能生巧,方能会做题,才会这道心中有数,心中有底,加油吧。

网站内容来自网络,如有侵权请联系我们,立即删除!
Copyright © 攒百科 鲁ICP备2024098652号-2